JOURNAL OF ENGINEERING PHYSICS

73
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The dynamic stresses in the core components of a fast pulsed reactor
are investigated. The results of a numerical calculation are presented.

In fast pulsed reactors operating on the thermal
expansgion principle the energy release is limited by
the dynamic stresses that develop during the pulse in
the core material [1,2]. In most cases in selecting
the reactor rating it is sufficient to know only the max-
imum value (amplitude} of the stresses, which is
reached in the free vibration stage [1,3].

In the core components of a fast pulsed reactor the
stress amplitude depends only on the total temperature
rise during the pulse and on the product of the natural
frequencies of the component and the pulse width [4].
The stresses are almost insensitive to other finer
variations in pulse shape.

This paper presents the results of numerical cal-
culations intended to verify these conclusions.

The calculations employthe complete setof pulses
obtained in the simple case whenthereactor processes
are determined by a single oscillatory system withone
degree of freedom. The dependence of stress ampli-
tude on pulse shape is investigated with reference to
the example of spherical shells with different natural
frequencies. The ratio of the effective stresses in the
shell to the stresses that would occur in the total ab-
sence of thermal expansion of the shell (the quantity
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Fig. 1. Shape of power pulse

at various values of the pa-

rameter wiTy: 1) w7y =
=0.18; 2) 1.44; 3) 11.5.

F) is computed. This ratio best characterizes the dy-
namics of the thermal expansion of the shell.
The system of equations has the form
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i;:t =ol(e,qg—u), q{f)= S n(t)dt,
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The equations were solved numerically on a computer
for the following values of the parameters: y; = 2+10°

Stress Amplitude F° Obtained from the Analytic
Formula and the Numerical Calculations

Stress amplitude F°
ol Calculated Numerical calculations

from (4) =0y i ==, l W=ty
0.156 0.997 — 0.997 —
0.314 0.987 — 0.987 —
0.468 0.973 0.972 — =
0.645 0.947 — 0.949 _
0.940 0.892 0.893 — —
1.380 (.786 — 0.784 e
1.404 0.780 — : - 0.787
1.935 0.636 0.65 —_ .-
2.82 0.410 — — 0.44
3.21 0.329 — 0.32 —
4,14 0.184 0.19 — e
5.81 0.059 —_ — 0.08
6.72 0.030 — 0.03 —
9,62 0.003 0.004 — -

1/sec*m; wi=0.4510°, wy = 0.15-10%, ws = 1.35-10°
1/sec; oy = 0.75°107%, ay=2.25107%, a3 = 0.25+1074
m/MJ; 7o =4+10"% 8-107%, 16-107%, 32.107%, 64-
+107%, 128-107%, 256+107¢ sec.

In the case represented by Eqgs. (1) the pulse shape
depends only on the parameter w; 7;. As it decreases,
the half-power pulse width, expressed in Ty units, de~
creases and the pulsebecomes increasingly asymmetric.

At large values of w7y (w3 7o > 3) inertia effects
become unimportant and can be neglected. In this
case the second of Egs. (1) becomes

Uy =014,
and system (1) is solved analytically. If the time is
measured in 7y units and reckoned from the maximum
of the power n, the solution is

g = -1 7 359551, (2)

14

Here the amplitude of F(t) in the free vibration stage
is determined from the analytic expression

T G 3)

sh Tawt -

If our initial assumption concerning the dependence:
of stress amplitude on pulse shape is correct, on the
basis of (3) for a pulse of arbitrary shape we obtain

Fo — T o (sh Ton )“1' @)

3.5255 3.5255

The results of the calculations are presented in
Figs. 1—3 and in the table. In Fig. 1 the power pulse



74
P
a8 N
7
2

04 N

\\

0 00 200 700 T

Fig. 2. Amplitudeof F(t)as a func-

tion of pulse width for spherical

shells with different vibration fre-
quencies (T in usec): 1) w = 1.85+
-10°1/sec; 2) 0.45+10%; 3) 0.15 - 10°

shape is shown for the three mostcharacteristic values
of wy Tg. In Fig. 2 the amplitude of F(t) is givenas a
function of the pulse width for three spherical shells
with different vibration frequencies. It is clear from
Fig. 2 that as the pulse width increases the amplitude
of F(t) falls the more steeply from unity to zero, the
greater the vibration frequency of the shell. In Fig. 3
the amplitude of F(t) is presented as a function of w;T,
and the pulse width in Ty units, which characterizes
the change in pulse shape, as a function of w;T. To
the scale selected the values of F° for each shell lie
close to the same curve.

In the table the amplitudes calculated from (4) are
compared with the numerical solution of Egs. (1).

Clearly, the stress amplitudes for each of the
shells obtained from numerical calculations are very
close to the values determined from (4). This fact and
the data of Fig. 3 show that in estimating the stresses
in a fast pulsed reactor it is indeedpossible to assume
that the stress amplitude depends only on the total
heating of the components during the pulse and on the
product of the natural frequencies of the component
and the pulse width.

Finally we present formulas for estimating the
stress amplitude in components of considerable thick-
ness.

If for these components we employ the solution of
the thermoelastic problem in the form of a Fourier
series, the stresses in the one-dimensional case have
the form [4]

0% 1) =A(x)q(O) +

-3 I3
+ ;Ai (%) Q q(2)sine; (t —2) dz, (5)

where Ag{x), Aj(x) are functions depending on the space
coordinates.
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Fig. 3. Amplitude of F(t) as a

function of the product wiT

(curve 1) and pulse width in 7,

units as a functionof the prod-
uct wT (curve 2).

In analogy with the derivation of Eq. (4) we obtain
the following estimate for the stress amplitude at
point x:

+

0°(2) g[A oo VAW
q(o) ol T; o
A () Tom 1
+; o, 35265 4 Teom |’
3.5255

(6)

NOTATION

n(t) is the reactor power; npy is the maximum
power; q(t) is the energy released in the reactor by
time t; g(») is the value of g at the end of the pulse;

t is the time; Ty is the initial reactor going-up period;
T is the half-power pulse width; 1 = t/7y; wi, uj are
the cyclic vibration frequency and the radial displace-
ment of the i-th shell, respectively; o; is a param-
eter depending on dimensions, heat capacity, and
coefficient of thermal expansion of the i-th shell; v,
is the reactivity coefficient; x is a space coordinate;
and o(x, t), 0°x) are the stress in the component at
point x and time t and the maximum stress, respec-
tively.
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